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When John Bernoulli amused himself in 1696 with the design of a slide

of such shape as to permit the proverbial, infinitely smooth, elephant of

aeglectible volume to slide from point A to point B (Figure 1) in the

shortest possible time, a new mathematical discipline, the Calculus of

Variations, came into existence.

In the middle of the 18th century, this problem was subjected to

generalizations and analysis by L. Euler and J. L. de Lagrange. An example

of such a more general problem is the so-called problem of Lagrange, namely,

t
to find a vector function y: R - R  (curve in (n + 1)--dimene^unal (t,y)-space)

which satisfies specified boundary conditions at L - 0 and for some t - T > no

satisfies a set of constraining differential ecu?tions of first rider,

( 1 )	 m(t,y,y') - 0, where m: R x P. x R 	 Ru, u < no

and is si' ch that
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(T
(2)	 1[y] - I	 f (t•y(t) , y ' (t) )dt,	 f ! R , !t^'

p

yields the smallest value that is attainable. V'e shall hereby a:;aurie without

much loss of generality, that f, m and their partial derivatiVes of first

order with respect to all variables are continuous.

For this problem to have meaning, (. has to specify the type (A_ tunctiuns

that are admitted to compete for the minimum of (2). In the classical theory,

one usually required that y' be sectionally continuous (y' E S). Then, the

solution y, if it exists, is sectionally smooth. (The understanding is t!:at

t

Y(t) - y(0) +	 y'(s)ds.)	 [1, p. 187ff, 12, p. 325ff.] On the other hard,
0

one could permit y' to be bounded and measurable (y' E M). Then, y is

absolutely continuous [ 5]. An even more general case is the one where the

so-called generalized curves ;which were introduced by L. C. Young are per-

mitted to compete [8].

A number of necessary and sufficient conditions for a ftinction to yie*l.d

a minimum for (2) have been derived over the past 250 years. The more recent

work consisted chiefly in generalizing, refining, and "rigor-proofing" the

work of the 18 th and early 19 th century mathematicians.

0

The most prominent and most widely known necessary conditions are the

multiplier rule and the Weierstrass condition.
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The multi p lier rule states that if y is a sulutici, with ^'	 S, then there

exists a vector function A: R	 R^', X E S and a constant X 0 , whc:reA k^ 1 , ) 0 (000),

so that the equations

(3) X0fy'(t,y(t)'Y'(t)) + A •0 y'(t,Y(t),Y'(t))

f t

[X0fy(t.y(t)'Y'(t)) + A.^y(t.Y(t),Y'(t))]dr. + C
0

are satisfied wherever y' is continuous and where c, is some ::onstant i-vector

[12, p. 331-1.	 (If y' E M, then A E M and the equations (3) halve to hold

almost everywhere on [0,T] [8, p. 241. In either case, ^ is continuous

wherever y' is continuous. ( Equations (3'^ in differentiated form are often

J referred to as the Euler-Lagrange equations or the Mayer equations.)

The Weierstrass condition states that, with % > 0, whenever y' is

continuous,

(4) X0[f(t.Y(t),C) - f(t,Y(t),Y'(t))] + (y'(t) - C)•.AOfy'(t.y(t).1''(t)> +

+ a.my'(t,y(t).Y'(t))] > 0

has to hold for all ^ for wh'ch O(t,y(t),^) - 0. If y' e M, then (4) ;ias to

hold a.e. on [0,T] [8, p. 24;.)

6

If the beginning point of y at t - 0 and the endpoint for some t - T are

allowed to move freely on some specified manifolds, some additional conelitions,
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the so - ! Led trans 	 ,,.ili c	 ) «''

U	 t	 ^..,^

houndar- c o;i , l i I i ins .

_. ,.t i t. be nited ti:at: ill C il'_ t ortll(„ c'l. 100 a ^ we l l ._,, I ll t. i ., _, a ).7s I s 1f

this problem that leads to (3) and (4), no restrictions other thar. (1) are

;.'aces: upon the values of y' (t). This i-i essontial ly 	with aisuming

c:,dL the values of y' (t) lie in an open -subset of :!1.

The Lagrange problem (1), (2) nndl the twu r.e: • essary cor"i;. {ems (3) ana

^4) may be inter.preLed as a (vaL.t ) generalization of the Problem of fiiiding,

the minimum of a (differentiable) real-valued function of a real variable in

an open interval.

Let h: (-1,1) i K, h differentiable, assume its minimum for t = t,. Then,

by necessity,

(3a)	 h'(to) M U

(4a)	 h(tc)) _ h(0 for all ^ F (-1,1).

This analogy is not nearly as far-fetched as it would appear upon first

glance. Actually, the left side of (3) is obtained by a process that is, in

essence, a generalization of the differentiation process to functionals that

a

are de:ineJ on a subset of the solution set of (1), and (4) is, in Effect,
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a necessary condition for

( T	 _	 _	 ^T

J	 f(t,y(t)'y'(t))dt - (	 f(t,y(0,y'(t))dr.	 0

to hold for all solutions of ^(t,y(c),^^'(t)) j 0 that sass for t	 0 0-,rough

e.he same beginning point and for t - 1 through tfi^ stcne endpoint as y.

Pure mathematical speculation as well as practical problems that were

generated by a modern and very sophisticated technology led to a re-examination

of the scope and the applicability of the Calculus of Variations. To illustrate

this, let us first mention that a continuous function need not assume its

minimum in an open interval, but does assume its minimum in a closed and bounded

interval. Similarly, there are problems which may be formulated as Variational

Problems if the admissible values of y'(t) form an open set, that hAve no solution,

but do have a solution if the values of y'(t) are restricted to a closed and bounded

set. This is dramatically demonstrated by the example of applying a suitable

external force, say x3, to a moving masspoint, whose location and velocity

are given by (y(t),y'(t)), to make it move from a given initial state

Y(0) = x O , y'(0) = x 0 to the terminal state (0,0) obeying the law of motion

y" = x3(t), in the shortest possible time. With y = x l , y' = x 2 , we may

formulate this problem as follows: To find (x l , x ? , x^) so that x l (0)	 x1,

•

x 2 (0) = x" x 1 (T) = 0 0 x, (T) - 0 for some T > 0,
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x	 x^

(S)

X;	 x

such that

r l'
( 6 )	 d 

is as small as possible.

This problem which is of the type (1), (2), does not have a solution if

the admissible values of xi(t) form an open set, as the reader can easily

convince himself. However, it does have a solution when the values of x'(t)

are - more realistically - restricted to a compact SP-L, sxy by jxj(t)l = 1,

as was first shown by D. Bushaw [2]. But then, this problem ceases to be a

variational problem and it is not immediately amenable to the analysis that

leads to (3) and (4), as well as to other necessary and sufficient conditions

in the Calculus of Variations.

This latter problem is characteristic of the type of problems that are

dealt with in what is now referred to as the Modern Theory of Optimal Control,

a new mathematical discipline that exploded into being in the 1950's. Generally,

the theory of optimal control deals with problems such as the following one: To

find a vector function (control) u: R -+ Rm with u(t) e U where U (control region)

is a given subset of Rm so that the solution x: R + R  (trajectory) of

•

I

(7)	 x' - ^(t,x,u(t)),	 (^: R x R  x R  - Rr,,
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satisf ies certain bound,-.try conditioi-s at t - U alld t or 3tO 0 f	 '! - f; r,nd is

such that

.T

(8)	 .l[ul	 F(t,X(t),u(t))dt, 	 F: K . 
R11 _ 8ill , R,

J0

yields the smallest attai.,iable value. Again, we si ► al.;	 +sume tl, at F, m and

their partial derivatives of first order with respect to all variables are

continuous. For competition, we either admit u E ::, or 11	 M. In the first

:ase, the trajectory - if it exists - is secticnally smooth, in the latter

case it is absolutely continuous.

Were it not for the restriction u(t) , U, or if U were open, this problem

would simply be a special case of the ',-.agrange problem (1), (2). This can be

easily seen by setting u - z', x' - m(t,x,u) - p (t,x,x' X), F(t,x,u) - f (t,x,z') .

However, if U is not open or if it is not known apriori that u(t) lie3 in

the interior of U for all t, then the classical arguments that were developed

for the analysis of variational problems are no longer applicable and one faces,

what appears to be an entirely new type of problem, superficial similarities

notwithstanding.

Although successful attempts have been made to deal with special cases of

6

such problems within the framework of the Calculus of Variations many years

before the official birth of optimal control theory (see for example [13) in
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conjunction with [ 11), a unit ied, coinpvchensIvo, ant, lip	 I 	 presented

treatment had not appeared (in Engiitsh) prior to 1002. At that Lime, L. S.

1 1 ontryagin and his collaborators puhlishod a theory, divorced from the classical

Calculus of Variatiuns, the most widely known a:+pecL of rhtch is what has become

known as Pontryagin's Principle [11].

Font--yagin's principle states that for u 	 5, o(r) E U to be a solution of

the optimal control problem (7), (8) ( optima l contr ol), it is necessary that

there exists a sectionally smooth vector function o: k 	 R  and a constant

1'o 
> 0 with (p o ,p) # (0,0) so that

(9) p' = -V0Fx(t,x(t),u(0)- p.(Dx(t,x(t),u(t))

for all t where u is continuous and

(10) p,F(t,x(t),u(t)) + p•^D(t,x(t),u(t)) < poF(t,x(t),F,) f- p.41(t,x(t),C)

for all F, E U and all t for which u is continuous. (If u E M, then p is

absolutely continuous and (9), (10) have to hold a t e. on [0,T 1,.l	 [11 0 p. 61, 81].

Again, if U is open, or the entire Rm space, then (9) and (10) lead to (3)

and (4). (Note that in that case, the partial derivatives of the left side of

(10) with respect to u have to vanish by necessity.) By the same token, (3)

and (4) together with the transversality conditions (note that beginning point

•

and endpoint of z (u - z') are free) lead to (9) and (10) .
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Huwever, such a smooth transit Ion process f,,t l-, i ',,^n 11 ib rr)t o{.en. 	 Again,

it is worthwhile to return for a moment to OW simpll e problean of finding the

minimum of a real valued (di.terentiahlt : ) g enet Ion of i real variable, but this

iine, It-, a cloyed interval: 	 1.et It: [ - I , 11 - k, ii di t .' erent idb le, assume its

minimum at t - t 0 t 1-1,11. Unless t 0 is an interior point of which we have no

:}p riori knowledge, (3a) is not a necessary condition anymore. Suppose, we

onto
introauce a new independent variable 6 by means of the smooth map	 R	 WI-i,l]

that is given by ^(O - din 6. Then, the functi.on K which is defined by

g(6) -- h(sin 6) is defined and differentiable on R and has the same range as h.

Now, (3a) and (4a) are valid necessary conditions for d to assume its minimum at

0 - 6 0 and we obtain in turn

(3b)	 g'(60) - h'(sin 6 0 )cos 6 0 a 0,

(4b)	 g(60) = h(sin 6 0 ) < h(sin 6) for all 0 t R.

The solution of the original problem is then recovered from t 0 . sin 600

A similar transformation to transform certain (simple) optimal control

problems into Lagrange problems has been carried out at occassions by engineers

without them ever stopping to realize that they had done something very clever.

The author's students, Stephen K. Park, Lawrence M. Hanafy, and Terry A. Straeter

•

Partly supported by NASA grant NGL-34-002-032.
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have investigated the p-,.entla'. generalizations of ,^-I-, Idt-8 %;tct, the goal of

establishing the equivalence of ovLima1 control pr. , hle ►ns , L  h - Iassical Lagrange

problems in the sense that with each coript• tin ', IunctIou in tht, one problem there

co.resl-onds at least one comlcting functio„ ic y tt ► c utl!u	 . _,)4em anJ vice verAa,

and, that the integrals to be minimized in tlhc; two problen ► 5 have the same value fo;

corresponding competing functions. Suppose that P 1 is the contrul problem which we

formulated in (7), (8) and that u,: Rp- ont co^U is a cr:ntivaous Map from -ome

cartesian space Rp onto the contr9l region U c R P . Them if P is the problem

of finding a vector function z': K ► Rp bo tl.ac

(7a)
	

X, - 1(t,x,W,W)),

I	 x satisfies the same boundary conditions at4 in (7), (R), "nd is such that

T
(8a)	 J(W(z')] -	 F(t,x(t),W(z' (t))Jt

0

yields the smallest possible value, then, since J( ► W )] - J(u] for u - W(z'), the

problem P 2 is obviously equivalent to P 1 provided that ^, maps the set of all competing

vector functions z' by u -t,-z' onto the set of all competing vector functions u (9,10).

We note in passing that P 2 is a special case of the Lagrange problem (1),

(2) with I[z] = J[W(z')] and can be dealt with within the framework of the

classical theory of the Calculus of Variations. The solutions u of P 1 can then

be recovered from the solution z' of P 2 by means of u(t) - ^, (z'(t)). Note
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a1HO that the trajectory x is, in view of they re:iat:oneihi,,	 ), -nd

Elie same for corresponding functions z' and u.

To he set tled i a still the question of wite t he r or nut t here al e ► unc.:. i (,,,s

u with the required property, to wit: 	 v maps the aet of all cotrprting fitticticris

r.' of P., onto the set of all competing functions u of P ► .

This problem may be dealt with on various levels. Suppose we co;:s:c:or

S. Our problem may be formulated, without reference to the attending

,-ontrol } p roblems, in the following manner [ 101: Given a conti.nucua m ap

u nto
Rp --	 U. Is there, for any given continuous fun:tiott u: I	 U kwhere

I denotes a closed interval) a continuous (or, mm,,hn, aecciot ►ally continuous)

function z': I	 Rp such that ^W (t)) - u(t) for all t c I? (See also

Figure 2. )

A partial answer to this last question, in form of a (strong) sufficient

condition may be found in a paper by E. Floyd (4J where he asserts that ^ has

the required property (which topologists call the lifting_ property) if there

is a compact set Z CRP so that J(Z) - U and if ^ is open and light on Z,

i.e., maps open sets in Z into open sets in U (in the relative topologies of

Z and U) and is so that the inverse image in Z of each point. in U is totally

u

disconnected. This result Is too restrictive for our purpose. First, such
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maps :to not even exist if m	 darn Z and appear to v.1.JbL for m > Jim Z only for

pathological cases, and se.cond)v, even if dim 1. i p = ►n, it eAminates mappings

onto
that serve our purpose quite well.	 (in Figure 3 w.: depict a mapping ty: R	 ) [ - 1,11

Ahich is a perfectly good mapping for the purpose of transforming the optimal

control problem (5), (6) into an equivalent l.agrang o problem, but is neither

-pen nor light.)

A more satisfactory answer is available, uowever, if one allows pounded

measurable functions as competing functions and we shall therefore call this,

in the time honored tradition, the natural setting for our problem. In this

case, a lemma by Filippov [3] provides for a solution to our problem for a

large class of optimal control problems. Filippov's lemma, reformulated and

specialized to fit our needs, asserts that if U is compact, ^ is continuous,

W(R p ) - U, and if there exists a compact subset Z C Rp so that ► (Z) - 11, then,

for any (bounded) measurable function u: 1 - U there exists. a (bounded)

measurable function z': I 	 Rp so that ► W (t)) - u(t) for all t c 1.

The existence of a function ► which satisfies the hypotheses of Filippov's

lemma depends, of course, on the nature of U and has to be established for

various types of compact sets U. (If U is a right parallelepiped, a function

•

W with the required property is easy to come by and one may take p - m in this
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case [9].	 If U is a compact, convex polyhedron - a -.• ry iiiportdI ► t type of

control region - several such maps which are even smooth, were constructed by

Park with p + 1 equal to the num;er of vertices of the polyhedron L10]. This,

incidentally, also enabled tom to establish the uang-bang principle (11, p. 117)

on the basis of (3), (4), and the transversality conditions.)

In all such cases where Filippov's lemma applies, Pontryagin's principle

can be derived from the multiplier rule (3), the Weierstrass condition (4)

anJ the rraneversality conditions [101. In addition to Pontryagin's principle,

one obtains a set of equations., namely

[pOFu(t'x(t).'W(z')) + p•wu(t.x(t)'gj(z'))JW'(z') - 0

which one may solve algebraically for z' and thusly obtain from u - ^(z') the

possible candidates for optimal controls - provided that ^ is a smooth map.

It is now tempting to utilize all available knowledge about the calculus

of variations, insofar as it pertains to global minima, for the investigation

of optimal control problems that are equivalent with Lagrange problems in the

above sense. Although some early results concerning the use of Weierstrass'

6

field theory to obtain some sufficient conditions have been somewhat discouraging

(6), such investigations are still under way. Also under cons-k.:.eration are
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questions concerning the aprlicabilicy o: existing .:igurithms :or the numerical

solution of optimal control pr,)hlems with an open control region (or Lagrange

problems) to equivalent optimal control problems with a compact control region,

and questions about the existence of optimal controls.

6

NORTH CAROLINA STATE "NIVERSITY

RALEIGH, NORTH CAROLINA

e
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